1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
//! Utilities for GDS conversion.
//!
//! Converts between Substrate's layout data-model and [`gds`] structures.

use std::collections::HashSet;
use std::{collections::HashMap, sync::Arc};

use arcstr::ArcStr;
use gds::{GdsUnits, HasLayer};
use geometry::prelude::Polygon;
use geometry::span::Span;
use geometry::transform::Transformation;
use geometry::{
    prelude::{Corner, Orientation, Point},
    rect::Rect,
};
use indexmap::IndexMap;
use rust_decimal::Decimal;
use rust_decimal_macros::dec;
use slotmap::{new_key_type, SlotMap};
use tracing::{span, Level};
use uniquify::Names;

use crate::io::layout::{BundleBuilder, HardwareType, PortGeometry};
use crate::layout::error::GdsExportError;
use crate::pdk::layers::LayerInfo;
use crate::{
    io::{layout::IoShape, NameBuf},
    pdk::layers::{GdsLayerSpec, HasPin, LayerContext, LayerId},
};

use super::error::{GdsImportError, GdsImportResult};
use super::LayoutContext;
use super::{
    element::{CellId, Element, RawCell, RawInstance, Shape, Text},
    error::GdsExportResult,
};

new_key_type! {
    /// A key used for identifying elements when importing a GDSII file.
    pub struct ElementKey;
}

/// An exporter for GDS files.
///
/// Takes a [`RawCell`] and converts it to a [`gds::GdsLibrary`].
pub struct GdsExporter<'a> {
    cells: Vec<Arc<RawCell>>,
    layers: &'a LayerContext,
    cell_db: Names<CellId>,
    gds: gds::GdsLibrary,
}

impl<'a> GdsExporter<'a> {
    /// Creates a new GDS exporter.
    ///
    /// Requires the cell to be exported and a [`LayerContext`] for mapping Substrate layers to GDS
    /// layers.
    pub fn new(cells: Vec<Arc<RawCell>>, layers: &'a LayerContext) -> Self {
        Self {
            cells,
            layers,
            cell_db: Default::default(),
            gds: gds::GdsLibrary::new("TOP"),
        }
    }

    /// Creates a new GDS exporter with the given units.
    ///
    /// Requires the cell to be exported and a [`LayerContext`] for mapping Substrate layers to GDS
    /// layers.
    pub fn with_units(cells: Vec<Arc<RawCell>>, layers: &'a LayerContext, units: GdsUnits) -> Self {
        Self {
            cells,
            layers,
            cell_db: Default::default(),
            gds: gds::GdsLibrary::with_units("TOP", units),
        }
    }

    /// Exports the contents of `self` as a [`gds::GdsLibrary`].
    pub fn export(mut self) -> GdsExportResult<gds::GdsLibrary> {
        for cell in self.cells.clone() {
            cell.clone().export(&mut self)?;
        }
        Ok(self.gds)
    }

    fn get_name(&self, cell: &RawCell) -> Option<ArcStr> {
        self.cell_db.name(&cell.id)
    }

    fn assign_name(&mut self, cell: &RawCell) -> ArcStr {
        self.cell_db.assign_name(cell.id, &cell.name)
    }

    fn get_layer(&self, id: LayerId) -> Option<GdsLayerSpec> {
        self.layers.get_gds_layer_from_id(id)
    }
}

#[allow(clippy::from_over_into)]
impl Into<gds::GdsLayerSpec> for GdsLayerSpec {
    fn into(self) -> gds::GdsLayerSpec {
        gds::GdsLayerSpec {
            layer: self.0 as i16,
            xtype: self.1 as i16,
        }
    }
}

/// An object that can be exported as a GDS element.
trait ExportGds {
    /// The GDS type that this object corresponds to.
    type Output;

    /// Exports `self` as its GDS counterpart, accessing and mutating state in `exporter` as needed.
    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output>;
}

impl ExportGds for RawCell {
    type Output = gds::GdsStruct;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let name = exporter.assign_name(self);
        let name_str: &str = self.name.as_ref();

        let span = span!(Level::INFO, "cell", name = name_str);
        let _guard = span.enter();

        let mut cell = gds::GdsStruct::new(name);

        cell.elems.extend(self.port_map().export(exporter)?);

        for element in self.elements.iter() {
            if let Some(elem) = element.export(exporter)? {
                cell.elems.push(elem);
            }
        }

        exporter.gds.structs.push(cell.clone());

        Ok(cell)
    }
}

impl ExportGds for HashMap<NameBuf, PortGeometry> {
    type Output = Vec<gds::GdsElement>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let mut elements = Vec::new();
        for (name_buf, geometry) in self {
            elements.extend((name_buf, &geometry.primary).export(exporter)?);
            for shape in geometry.unnamed_shapes.iter() {
                elements.extend((name_buf, shape).export(exporter)?);
            }
            for (_, shape) in geometry.named_shapes.iter() {
                elements.extend((name_buf, shape).export(exporter)?);
            }
        }
        Ok(elements)
    }
}

impl ExportGds for IndexMap<NameBuf, PortGeometry> {
    type Output = Vec<gds::GdsElement>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let mut elements = Vec::new();
        for (name_buf, geometry) in self {
            elements.extend((name_buf, &geometry.primary).export(exporter)?);
            for shape in geometry.unnamed_shapes.iter() {
                elements.extend((name_buf, shape).export(exporter)?);
            }
            for (_, shape) in geometry.named_shapes.iter() {
                elements.extend((name_buf, shape).export(exporter)?);
            }
        }
        Ok(elements)
    }
}

/// A trait that describes where to place a label for a given shape.
trait PlaceLabels {
    /// Computes a [`Point`] that lies within `self`.
    ///
    /// Allows for placing labels on an arbitrary shape.
    fn label_loc(&self) -> Point;
}

impl PlaceLabels for Shape {
    fn label_loc(&self) -> Point {
        self.shape().label_loc()
    }
}

impl PlaceLabels for geometry::shape::Shape {
    fn label_loc(&self) -> Point {
        match self {
            geometry::shape::Shape::Rect(ref r) => r.label_loc(),
            geometry::shape::Shape::Polygon(ref p) => p.label_loc(),
        }
    }
}

impl PlaceLabels for Rect {
    fn label_loc(&self) -> Point {
        self.center()
    }
}

impl PlaceLabels for Polygon {
    fn label_loc(&self) -> Point {
        self.center()
    }
}

impl ExportGds for (&NameBuf, &IoShape) {
    type Output = Vec<gds::GdsElement>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let (name_buf, shape) = *self;
        let mut elements = Vec::new();
        if let Some(element) =
            Shape::new(shape.layer().pin(), shape.shape().clone()).export(exporter)?
        {
            elements.push(element);
        }
        if let Some(element) = Text::new(
            shape.layer().label(),
            name_buf.to_string(),
            Transformation::from_offset(shape.shape().label_loc()),
        )
        .export(exporter)?
        {
            elements.push(element.into());
        }
        Ok(elements)
    }
}

impl ExportGds for Element {
    type Output = Option<gds::GdsElement>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "element", element = ?self);
        let _guard = span.enter();

        Ok(match self {
            Element::Instance(instance) => Some(instance.export(exporter)?.into()),
            Element::Shape(shape) => shape.export(exporter)?,
            Element::Text(text) => text.export(exporter)?.map(|text| text.into()),
        })
    }
}

impl ExportGds for RawInstance {
    type Output = gds::GdsStructRef;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "instance", instance = ?self);
        let _guard = span.enter();

        let cell_name = if let Some(name) = exporter.get_name(&self.cell) {
            name
        } else {
            self.cell.export(exporter)?.name
        };

        Ok(gds::GdsStructRef {
            name: cell_name,
            xy: self.trans.offset_point().export(exporter)?,
            strans: Some(self.trans.orientation().export(exporter)?),
            ..Default::default()
        })
    }
}

impl ExportGds for Shape {
    type Output = Option<gds::GdsElement>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "shape", shape = ?self);
        let _guard = span.enter();

        Ok(if let Some(layer) = self.layer().export(exporter)? {
            Some(match self.shape() {
                geometry::shape::Shape::Rect(r) => gds::GdsBoundary {
                    layer: layer.layer,
                    datatype: layer.xtype,
                    xy: r.export(exporter)?,
                    ..Default::default()
                }
                .into(),
                geometry::shape::Shape::Polygon(p) => gds::GdsBoundary {
                    layer: layer.layer,
                    datatype: layer.xtype,
                    xy: p.export(exporter)?,
                    ..Default::default()
                }
                .into(),
            })
        } else {
            None
        })
    }
}

impl ExportGds for Text {
    type Output = Option<gds::GdsTextElem>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "text", text = ?self);
        let _guard = span.enter();

        Ok(if let Some(layer) = self.layer().export(exporter)? {
            Some(gds::GdsTextElem {
                string: self.text().clone(),
                layer: layer.layer,
                texttype: layer.xtype,
                xy: self.trans.offset_point().export(exporter)?,
                strans: Some(self.trans.orientation().export(exporter)?),
                ..Default::default()
            })
        } else {
            None
        })
    }
}

impl ExportGds for Rect {
    type Output = Vec<gds::GdsPoint>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "rect", rect = ?self);
        let _guard = span.enter();

        let bl = self.corner(Corner::LowerLeft).export(exporter)?;
        let br = self.corner(Corner::LowerRight).export(exporter)?;
        let ur = self.corner(Corner::UpperRight).export(exporter)?;
        let ul = self.corner(Corner::UpperLeft).export(exporter)?;
        Ok(vec![bl.clone(), br, ur, ul, bl])
    }
}

impl ExportGds for Polygon {
    type Output = Vec<gds::GdsPoint>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "polygon", polygon = ?self);
        let _guard = span.enter();

        let mut points: Vec<gds::GdsPoint> =
            self.points()
                .iter()
                .map(|p| p.export(exporter))
                .collect::<Result<Vec<gds::GdsPoint>, GdsExportError>>()?;
        let point0 = self.points()[0].export(exporter)?;

        points.push(point0);
        Ok(points)
    }
}

impl ExportGds for Orientation {
    type Output = gds::GdsStrans;

    fn export(&self, _exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "orientation", orientation = ?self);
        let _guard = span.enter();

        Ok(gds::GdsStrans {
            reflected: self.reflect_vert(),
            angle: Some(self.angle()),
            ..Default::default()
        })
    }
}

impl ExportGds for Point {
    type Output = gds::GdsPoint;

    fn export(&self, _exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "point", point = ?self);
        let _guard = span.enter();

        let x = self.x.try_into().map_err(|e| {
            tracing::event!(
                Level::ERROR,
                "failed to convert coordinate to i32: {}",
                self.x
            );
            e
        })?;
        let y = self.y.try_into().map_err(|e| {
            tracing::event!(
                Level::ERROR,
                "failed to convert coordinate to i32: {}",
                self.x
            );
            e
        })?;
        Ok(gds::GdsPoint::new(x, y))
    }
}

impl ExportGds for LayerId {
    type Output = Option<gds::GdsLayerSpec>;

    fn export(&self, exporter: &mut GdsExporter<'_>) -> GdsExportResult<Self::Output> {
        let span = span!(Level::INFO, "layer ID", layer_id = ?self);
        let _guard = span.enter();

        let spec = exporter.get_layer(*self).map(|spec| spec.into());

        if spec.is_none() {
            tracing::event!(
                Level::WARN,
                "skipping export of layer {:?} as no corresponding GDS layer was found",
                self
            );
        }

        Ok(spec)
    }
}

/// An importer for GDS files.
pub struct GdsImporter<'a> {
    cells: HashMap<ArcStr, Arc<RawCell>>,
    gds: &'a gds::GdsLibrary,
    layouts: &'a mut LayoutContext,
    layers: &'a mut LayerContext,
    units: Option<Decimal>,
}

/// An imported GDS file, after conversion to Substrate [`RawCell`]s.
#[derive(Debug, Clone)]
pub struct ImportedGds {
    /// A mapping from cell name to imported cell.
    pub cells: HashMap<ArcStr, Arc<RawCell>>,
}

impl<'a> GdsImporter<'a> {
    /// Creates a new GDS importer.
    pub fn new(
        gds: &'a gds::GdsLibrary,
        layouts: &'a mut LayoutContext,
        layers: &'a mut LayerContext,
        units: Option<Decimal>,
    ) -> Self {
        Self {
            cells: Default::default(),
            gds,
            layouts,
            layers,
            units,
        }
    }

    /// Imports a [`gds::GdsLibrary`].
    pub fn import(mut self) -> GdsImportResult<ImportedGds> {
        self.run_preimport_checks()?;
        for strukt in GdsDepOrder::new(self.gds).total_order() {
            self.import_and_add(strukt)?;
        }
        Ok(ImportedGds { cells: self.cells })
    }

    /// Imports a single cell and all of its dependencies into the provided cell.
    pub fn import_cell(&mut self, name: impl Into<ArcStr>) -> GdsImportResult<Arc<RawCell>> {
        let name = name.into();
        self.run_preimport_checks()?;

        let mut cell = None;
        for strukt in GdsDepOrder::new(self.gds).cell_order(name.clone()) {
            if strukt.name == name {
                cell = Some(self.import_and_add(strukt)?);
            } else {
                self.import_and_add(strukt)?;
            }
        }

        match cell {
            Some(cell) => Ok(cell),
            None => Err(GdsImportError::CellNotFound(name)),
        }
    }
    /// Runs relevant checks before importing from a GDS library.
    fn run_preimport_checks(&mut self) -> GdsImportResult<()> {
        // Unsupported GDSII features, if ever added, shall be imported here:
        // if gdslib.libdirsize.is_some()
        //     || gdslib.srfname.is_some()
        //     || gdslib.libsecur.is_some()
        //     || gdslib.reflibs.is_some()
        //     || gdslib.fonts.is_some()
        //     || gdslib.attrtable.is_some()
        //     || gdslib.generations.is_some()
        //     || gdslib.format_type.is_some()
        // {
        //     return self.fail("Unsupported GDSII Feature");
        // }
        // And convert each of its `structs` into our `cells`

        self.check_units(&self.gds.units)
    }
    /// Checks that the database units match up with the units specified by the PDK.
    fn check_units(&mut self, units: &gds::GdsUnits) -> GdsImportResult<()> {
        let gdsunit = units.db_unit();

        if let Some(expected_units) = self.units {
            if (Decimal::try_from(gdsunit).unwrap() - expected_units).abs() / expected_units
                > dec!(1e-3)
            {
                return Err(GdsImportError::MismatchedUnits(
                    Decimal::try_from(gdsunit).unwrap(),
                    expected_units,
                ));
            }
        }
        Ok(())
    }
    /// Imports and adds a cell if not already defined
    fn import_and_add(&mut self, strukt: &gds::GdsStruct) -> GdsImportResult<Arc<RawCell>> {
        let name = &strukt.name;
        // Check whether we're already defined, and bail if so
        if self.cells.get(name).is_some() {
            return Err(GdsImportError::DuplicateCell(name.clone()));
        }

        let id = self.layouts.get_id();

        // Add it to our library
        let mut cell = RawCell::new(id, name);
        self.import_gds_struct(strukt, &mut cell)?;
        // TODO: self.data.layouts_mut().set_cell(cell);
        let cell = Arc::new(cell);
        // And add the cell to our name-map
        self.cells.insert(name.clone(), cell.clone());
        Ok(cell)
    }
    /// Imports a GDS Cell ([gds::GdsStruct]) into a [Cell]
    fn import_gds_struct(
        &mut self,
        strukt: &gds::GdsStruct,
        cell: &mut RawCell,
    ) -> GdsImportResult<()> {
        let span = span!(Level::INFO, "cell", name=%cell.name);
        let _guard = span.enter();
        // Importing each layout requires at least two passes over its elements.
        // In the first pass we add each [Instance] and geometric element,
        // And keep a list of [gds::GdsTextElem] on the side.
        let mut texts: Vec<&gds::GdsTextElem> = Vec::new();
        let mut elems: SlotMap<ElementKey, Shape> = SlotMap::with_key();
        // Also keep a hash of by-layer elements, to aid in text-assignment in our second pass
        let mut layers: HashMap<LayerId, Vec<ElementKey>> = HashMap::new();
        for elem in &strukt.elems {
            use gds::GdsElement::*;
            let e = match elem {
                GdsBoundary(ref x) => Some(self.import_boundary(x)?),
                GdsPath(ref x) => Some(self.import_path(x)?),
                GdsBox(ref x) => Some(self.import_box(x)?),
                GdsArrayRef(ref x) => {
                    let elems = self.import_instance_array(x)?;
                    cell.elements.reserve(elems.len());
                    for elem in elems {
                        cell.add_element(elem);
                    }
                    None
                }
                GdsStructRef(ref x) => {
                    cell.add_element(self.import_instance(x)?);
                    None
                }
                GdsTextElem(ref x) => {
                    texts.push(x);
                    None
                }
                // GDSII "Node" elements are fairly rare, and are not supported.
                // (Maybe some day we'll even learn what they are.)
                GdsNode(ref elem) => {
                    tracing::warn!(?elem, "ignoring unsupported GDS Node element");
                    None
                }
            };
            // If we got a new element, add it to our per-layer hash
            if let Some(e) = e {
                let layer = e.layer();
                let key = elems.insert(e);
                if let Some(ref mut bucket) = layers.get_mut(&layer) {
                    bucket.push(key);
                } else {
                    layers.insert(layer, vec![key]);
                }
            }
        }
        // Pass two: sort out whether each [gds::GdsTextElem] is a net-label,
        // And if so, assign it as a net-name on each intersecting [Element].
        // Text elements which do not overlap a geometric element on the same layer
        // are converted to annotations.
        for textelem in &texts {
            // Import the GDS text element into a Substrate text element, creating missing layers
            // as necessary.
            let text_elem = self.import_text_elem(textelem)?;

            let net_name = ArcStr::from(textelem.string.to_lowercase());
            let text_layer = self
                .layers
                .get_gds_layer(textelem.layerspec().try_into()?)
                .unwrap();
            let loc = self.import_point(&textelem.xy)?;

            let family = self.layers.layer_family_for_layer_id(text_layer);
            let pin_layer = family.and_then(|f| f.pin);
            let extract_pins =
                Some(text_layer) == family.and_then(|f| f.label) && pin_layer.is_some();

            if extract_pins {
                tracing::debug!("importing port `{}`", net_name);
                let pin_layer = pin_layer.unwrap();
                let family = family.unwrap();
                let mut port = crate::io::Signal.builder();
                let mut has_geometry = false;
                if let Some(layer) = layers.get_mut(&pin_layer) {
                    // Layer exists in geometry; see which elements intersect with this text
                    for ekey in layer.iter() {
                        let elem = elems.get_mut(*ekey);
                        if elem.is_none() {
                            continue;
                        }

                        let elem = elem.unwrap();

                        use crate::geometry::contains::Contains;

                        if elem.shape().contains(&loc).is_full() {
                            port.push(IoShape::new(
                                family.primary,
                                pin_layer,
                                text_layer,
                                elem.shape().clone(),
                            ));
                            has_geometry = true;

                            // This pin shape is stored in a port.
                            // No need to also include it as a regular element.
                            elems.remove(*ekey);
                        }
                    }
                }
                if !has_geometry {
                    tracing::warn!("ignoring empty port: `{}`", net_name);
                    continue;
                }
                // Unwrapping is OK because in the lines above, we continue if no geometry was found.
                // Thus, this port should have at least one shape, and `port.build()` should not
                // error.
                cell.merge_port(net_name, port.build().unwrap());
            } else {
                // Import the text element as is
                cell.add_element(text_elem);
            }
        }
        // Pull the elements out of the local slot-map, into the vector that [Layout] wants
        for elem in elems.drain().map(|(_k, v)| v) {
            cell.add_element(elem);
        }
        Ok(())
    }
    /// Imports a [gds::GdsBoundary] into a [Shape]
    fn import_boundary(&mut self, x: &gds::GdsBoundary) -> GdsImportResult<Shape> {
        let span = span!(Level::INFO, "boundary", value=?x);
        let _guard = span.enter();

        let mut pts: Vec<Point> = self.import_point_vec(&x.xy)?;
        if pts[0] != *pts.last().unwrap() {
            return Err(GdsImportError::InvalidGdsBoundary);
        }
        // Pop the redundant last entry
        pts.pop();
        // Check for Rectangles; they help
        let inner = if pts.len() == 4
            && ((pts[0].x == pts[1].x // Clockwise
            && pts[1].y == pts[2].y
            && pts[2].x == pts[3].x
            && pts[3].y == pts[0].y)
                || (pts[0].y == pts[1].y // Counter-clockwise
            && pts[1].x == pts[2].x
            && pts[2].y == pts[3].y
            && pts[3].x == pts[0].x))
        {
            // That makes this a Rectangle.
            geometry::shape::Shape::Rect(Rect::new(pts[0], pts[2]))
        } else {
            // Otherwise, it's a polygon
            geometry::shape::Shape::Polygon(Polygon::from_verts(pts))
        };

        // Grab (or create) its [Layer]
        let layer = self.import_element_layer(x)?;
        // Create the Element, and insert it in our slotmap
        let shape = Shape::new(layer, inner);
        Ok(shape)
    }
    /// Imports a [gds::GdsBox] into a [Shape]
    fn import_box(&mut self, gds_box: &gds::GdsBox) -> GdsImportResult<Shape> {
        let span = span!(Level::INFO, "box", value=?gds_box);
        let _guard = span.enter();

        // GDS stores *five* coordinates per box (for whatever reason).
        // This does not check fox "box validity", and imports the
        // first and third of those five coordinates,
        // which are by necessity for a valid [GdsBox] located at opposite corners.
        let inner = geometry::shape::Shape::Rect(Rect::new(
            self.import_point(&gds_box.xy[0])?,
            self.import_point(&gds_box.xy[2])?,
        ));

        // Grab (or create) its [Layer]
        let layer = self.import_element_layer(gds_box)?;
        // Create the Element, and insert it in our slotmap
        let shape = Shape::new(layer, inner);
        Ok(shape)
    }
    /// Import a [gds::GdsPath] into an [Element]
    fn import_path(&mut self, x: &gds::GdsPath) -> GdsImportResult<Shape> {
        let span = span!(Level::INFO, "path");
        let _guard = span.enter();

        let pts = self.import_point_vec(&x.xy)?;
        let width = if let Some(w) = x.width {
            w as i64
        } else {
            return Err(GdsImportError::Unsupported(arcstr::literal!(
                "GDS path width must be specified"
            )));
        };

        let layer = self.import_element_layer(x)?;
        let (begin_extn, end_extn) = match x.path_type {
            Some(0) => (0, 0),
            Some(2) => (width / 2, width / 2),
            Some(4) => (
                x.begin_extn.unwrap_or_default() as i64,
                x.end_extn.unwrap_or_default() as i64,
            ),
            None => (0, 0),
            _ => {
                return Err(GdsImportError::Unsupported(arcstr::literal!(
                    "Only flush and square path ends are supported"
                )))
            }
        };

        if pts.iter().all(|pt| pt.x == pts[0].x) {
            Ok(Shape::new(
                layer,
                Rect::from_spans(
                    Span::from_center_span(pts[0].x, width),
                    Span::new(
                        pts.iter().map(|pt| pt.y).min().unwrap(),
                        pts.iter().map(|pt| pt.y).max().unwrap(),
                    )
                    .union(Span::from_point(pts[0].y).expand_all(begin_extn))
                    .union(Span::from_point(pts[pts.len() - 1].y).expand_all(end_extn)),
                ),
            ))
        } else if pts.iter().all(|pt| pt.y == pts[0].y) {
            Ok(Shape::new(
                layer,
                Rect::from_spans(
                    Span::new(
                        pts.iter().map(|pt| pt.x).min().unwrap(),
                        pts.iter().map(|pt| pt.x).max().unwrap(),
                    )
                    .union(Span::from_point(pts[0].x).expand_all(begin_extn))
                    .union(Span::from_point(pts[pts.len() - 1].x).expand_all(end_extn)),
                    Span::from_center_span(pts[0].y, width),
                ),
            ))
        } else {
            Err(GdsImportError::Unsupported(arcstr::literal!(
                "2D GDS paths not yet supported"
            )))
        }
    }
    /// Import a [gds::GdsTextElem] cell/struct-instance into an [TextElement].
    fn import_text_elem(&mut self, sref: &gds::GdsTextElem) -> GdsImportResult<Text> {
        let string = ArcStr::from(sref.string.to_lowercase());
        let span = span!(Level::INFO, "text element", text = %string);
        let _guard = span.enter();

        // Convert its location
        let loc = self.import_point(&sref.xy)?;
        let layer = self.import_element_layer(sref)?;
        Ok(Text::new(layer, string, Transformation::from_offset(loc)))
    }
    /// Import a [gds::GdsStructRef] cell/struct-instance into an [Instance]
    fn import_instance(&mut self, sref: &gds::GdsStructRef) -> GdsImportResult<RawInstance> {
        let span = span!(Level::INFO, "instance", name = %sref.name, loc = %sref.xy);
        let _guard = span.enter();

        // Look up the cell-key, which must be imported by now
        let cell = self
            .cells
            .get(&sref.name)
            .ok_or_else(|| GdsImportError::CellNotFound(sref.name.clone()))?
            .clone();
        // Convert its location
        let loc = self.import_point(&sref.xy)?;
        Ok(RawInstance::new(
            cell,
            Transformation::from_offset_and_orientation(
                loc,
                sref.strans
                    .as_ref()
                    .map(|value| self.import_orientation(value))
                    .map_or(Ok(None), |v| v.map(Some))?
                    .unwrap_or_default(),
            ),
        ))
    }
    /// Imports a (two-dimensional) [`gds::GdsArrayRef`] into [`Instance`]s.
    ///
    /// Returns the newly-created [`Instance`]s as a vector.
    /// Instance names are of the form `{array.name}[{col}][{row}]`.
    ///
    /// GDSII arrays are described by three spatial points:
    /// The origin, extent in "rows", and extent in "columns".
    /// In principle these need not be the same as "x" and "y" spacing,
    /// i.e. there might be "diamond-shaped" array specifications.
    ///
    /// Here, arrays are supported if they are "specified rectangular",
    /// i.e. that (a) the first two points align in `y`, and (b) the second two points align in `x`.
    ///
    /// Further support for such "non-rectangular-specified" arrays may (or may not) become a future addition,
    /// based on observed GDSII usage.
    fn import_instance_array(
        &mut self,
        aref: &gds::GdsArrayRef,
    ) -> GdsImportResult<Vec<RawInstance>> {
        let span = span!(Level::INFO, "instance array");
        let _guard = span.enter();

        // Look up the cell, which must be imported by now
        let cell = self
            .cells
            .get(&aref.name)
            .ok_or_else(|| GdsImportError::CellNotFound(aref.name.clone()))?;
        let cell = Arc::clone(cell);

        // Convert its three (x,y) coordinates
        let p0 = self.import_point(&aref.xy[0])?;
        let p1 = self.import_point(&aref.xy[1])?;
        let p2 = self.import_point(&aref.xy[2])?;
        // Check for (thus far) unsupported non-rectangular arrays
        if p0.y != p1.y || p0.x != p2.x {
            return Err(GdsImportError::Unsupported(arcstr::literal!(
                "unsupported non-rectangular GDS array"
            )));
        }
        // Sort out the inter-element spacing
        let xstep = (p1.x - p0.x) / i64::from(aref.cols);
        let ystep = (p2.y - p0.y) / i64::from(aref.rows);

        // Incorporate the reflection/ rotation settings
        let mut orientation = Orientation::default();
        if let Some(strans) = &aref.strans {
            orientation = self.import_orientation(strans)?;
        }

        // Create the Instances
        let mut insts = Vec::with_capacity((aref.rows * aref.cols) as usize);
        for ix in 0..i64::from(aref.cols) {
            let x = p0.x + ix * xstep;
            for iy in 0..i64::from(aref.rows) {
                let y = p0.y + iy * ystep;
                insts.push(RawInstance::new(
                    cell.clone(),
                    Transformation::from_offset_and_orientation(Point::new(x, y), orientation),
                ));
            }
        }
        Ok(insts)
    }
    /// Imports a [`Point`].
    fn import_point(&self, pt: &gds::GdsPoint) -> GdsImportResult<Point> {
        let x = pt.x.into();
        let y = pt.y.into();
        Ok(Point::new(x, y))
    }
    /// Imports a vector of [`Point`]s.
    fn import_point_vec(&mut self, pts: &[gds::GdsPoint]) -> GdsImportResult<Vec<Point>> {
        pts.iter()
            .map(|p| self.import_point(p))
            .collect::<Result<Vec<_>, _>>()
    }
    /// Imports an orientation.
    fn import_orientation(&mut self, strans: &gds::GdsStrans) -> GdsImportResult<Orientation> {
        let span = span!(Level::INFO, "orientation", value=?strans);
        let _guard = span.enter();

        if strans.abs_mag || strans.abs_angle {
            return Err(GdsImportError::Unsupported(arcstr::literal!(
                "absolute magnitude/absolute angle are unsupported"
            )));
        }
        if strans.mag.is_some() {
            return Err(GdsImportError::Unsupported(arcstr::literal!(
                "orientation magnitude unsupported"
            )));
        }

        let orientation =
            Orientation::from_reflect_and_angle(strans.reflected, strans.angle.unwrap_or_default());
        Ok(orientation)
    }
    /// Gets the [`LayerSpec`] for a GDS element implementing its [`gds::HasLayer`] trait.
    /// Layers are created if they do not already exist,
    /// although this may eventually be a per-importer setting.
    fn import_element_layer(&mut self, elem: &impl gds::HasLayer) -> GdsImportResult<LayerId> {
        let spec = elem.layerspec();
        let span = span!(Level::INFO, "layer", spec=?spec);
        let _guard = span.enter();
        let spec = spec.try_into()?;
        let layers = &mut self.layers;
        Ok(if let Some(layer_spec) = layers.get_gds_layer(spec) {
            layer_spec
        } else {
            self.layers.new_layer_with_id(|id| LayerInfo {
                id,
                name: arcstr::format!("gds_{}_{}", spec.0, spec.1),
                gds: Some(spec),
            })
        })
    }
}

/// A helper for retrieving GDS dependencies in reverse topological order.
///
/// Creates a vector of references Gds structs, ordered by their instance dependencies.
/// Each item in the ordered return value is guaranteed *not* to instantiate any item which comes later.
#[derive(Debug)]
pub struct GdsDepOrder<'a> {
    strukts: HashMap<ArcStr, &'a gds::GdsStruct>,
    stack: Vec<&'a gds::GdsStruct>,
    seen: HashSet<ArcStr>,
}

impl<'a> GdsDepOrder<'a> {
    /// Creates a new [`GdsDepOrder`] for a [`gds::GdsLibrary`].
    fn new(gdslib: &'a gds::GdsLibrary) -> Self {
        // First create a map from names to structs
        let mut strukts = HashMap::new();
        for s in &gdslib.structs {
            strukts.insert(s.name.clone(), s);
        }
        Self {
            strukts,
            stack: Vec::new(),
            seen: HashSet::new(),
        }
    }
    /// Returns a reverse topological sort of all structs in `gdslib`.
    fn total_order(mut self) -> Vec<&'a gds::GdsStruct> {
        let strukts = self
            .strukts
            .values()
            .copied()
            .collect::<Vec<&gds::GdsStruct>>();
        for s in strukts {
            self.push(s)
        }
        self.stack
    }
    /// Returns all dependencies of a given cell in reverse topological order.
    fn cell_order(mut self, cell: impl Into<ArcStr>) -> Vec<&'a gds::GdsStruct> {
        if let Some(strukt) = self.strukts.get(&cell.into()) {
            self.push(strukt);
        }
        self.stack
    }
    /// Adds all of `strukt`'s dependencies, and then `strukt` itself, to the stack.
    fn push(&mut self, strukt: &'a gds::GdsStruct) {
        if !self.seen.contains(&strukt.name) {
            for elem in &strukt.elems {
                use gds::GdsElement::*;
                match elem {
                    GdsStructRef(ref x) => self.push(self.strukts.get(&x.name).unwrap()),
                    GdsArrayRef(ref x) => self.push(self.strukts.get(&x.name).unwrap()),
                    _ => (),
                };
            }
            self.seen.insert(strukt.name.clone());
            self.stack.push(strukt);
        }
    }
}