1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
//! A one-dimensional span.
//!
//! A span represents the closed interval `[start, stop]`.
use serde::{Deserialize, Serialize};

use crate::contains::{Containment, Contains};
use crate::intersect::Intersect;
use crate::sign::Sign;
use crate::snap::snap_to_grid;
use crate::union::BoundingUnion;

/// A closed interval of coordinates in one dimension.
///
/// Represents the range `[start, stop]`.
#[derive(
    Debug, Default, Clone, Copy, Hash, Ord, PartialOrd, Serialize, Deserialize, PartialEq, Eq,
)]
pub struct Span {
    start: i64,
    stop: i64,
}

impl Span {
    /// Creates a new [`Span`] from 0 until the specified stop.
    ///
    /// # Panics
    ///
    /// This function panics if `stop` is less than 0.
    pub const fn until(stop: i64) -> Self {
        assert!(stop >= 0);
        Self { start: 0, stop }
    }

    /// Creates a new [`Span`] between two integers.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `start` is less
    /// than or equal to `stop`.
    pub const unsafe fn new_unchecked(start: i64, stop: i64) -> Self {
        Self { start, stop }
    }

    /// Creates a new [`Span`] between two integers.
    pub fn new(start: i64, stop: i64) -> Self {
        use std::cmp::{max, min};
        let lower = min(start, stop);
        let upper = max(start, stop);
        Self {
            start: lower,
            stop: upper,
        }
    }

    /// Creates a span of zero length encompassing the given point.
    pub const fn from_point(x: i64) -> Self {
        Self { start: x, stop: x }
    }

    /// Creates a span of the given length starting from `start`.
    pub const fn with_start_and_length(start: i64, length: i64) -> Self {
        Self {
            stop: start + length,
            start,
        }
    }

    /// Creates a span of the given length ending at `stop`.
    pub const fn with_stop_and_length(stop: i64, length: i64) -> Self {
        Self {
            start: stop - length,
            stop,
        }
    }

    /// Creates a span with the given endpoint and length.
    ///
    /// If `sign` is [`Sign::Pos`], `point` is treated as the ending/stopping point of the span.
    /// If `sign` is [`Sign::Neg`], `point` is treated as the beginning/starting point of the span.
    pub const fn with_point_and_length(sign: Sign, point: i64, length: i64) -> Self {
        match sign {
            Sign::Pos => Self::with_stop_and_length(point, length),
            Sign::Neg => Self::with_start_and_length(point, length),
        }
    }

    /// Creates a new [`Span`] expanded by `amount` in the direction indicated by `pos`.
    pub const fn expand(mut self, sign: Sign, amount: i64) -> Self {
        match sign {
            Sign::Pos => self.stop += amount,
            Sign::Neg => self.start -= amount,
        }
        self
    }

    /// Creates a new [`Span`] expanded by `amount` in both directions.
    pub const fn expand_all(mut self, amount: i64) -> Self {
        self.stop += amount;
        self.start -= amount;
        self
    }

    /// Gets the starting ([`Sign::Neg`]) or stopping ([`Sign::Pos`]) endpoint of a span.
    #[inline]
    pub const fn endpoint(&self, sign: Sign) -> i64 {
        match sign {
            Sign::Neg => self.start(),
            Sign::Pos => self.stop(),
        }
    }

    /// Gets the shortest distance between this span and a point.
    ///
    /// # Example
    ///
    /// ```
    /// # use geometry::prelude::*;
    /// let span = Span::new(10, 20);
    /// assert_eq!(span.dist_to(4), 6);
    /// assert_eq!(span.dist_to(12), 0);
    /// assert_eq!(span.dist_to(27), 7);
    /// ```
    pub fn dist_to(&self, point: i64) -> i64 {
        if point < self.start() {
            self.start() - point
        } else if point > self.stop() {
            point - self.stop()
        } else {
            0
        }
    }

    /// Creates a new [`Span`] with center `center` and length `span`.
    ///
    /// `span` must be a positive, even integer.
    ///
    /// # Example
    ///
    /// ```
    /// # use geometry::prelude::*;
    /// let span = Span::from_center_span(0, 40);
    /// assert_eq!(span, Span::new(-20, 20));
    /// ```
    ///
    /// # Panics
    ///
    /// Passing an odd `span` to this method results in a panic:
    ///
    /// ```should_panic
    /// # use geometry::prelude::*;
    /// let span = Span::from_center_span(0, 25);
    /// ```
    ///
    /// Passing a negative `span` to this method also results in a panic:
    ///
    /// ```should_panic
    /// # use geometry::prelude::*;
    /// let span = Span::from_center_span(0, -200);
    /// ```
    pub fn from_center_span(center: i64, span: i64) -> Self {
        assert!(span >= 0);
        assert_eq!(span % 2, 0);

        Self::new(center - (span / 2), center + (span / 2))
    }

    /// Creates a new [`Span`] with center `center` and length `span` and snap the edges to the
    /// grid.
    ///
    /// # Example
    ///
    /// ```
    /// # use geometry::prelude::*;
    /// let span = Span::from_center_span_gridded(0, 40, 5);
    /// assert_eq!(span, Span::new(-20, 20));
    ///
    /// let span = Span::from_center_span_gridded(35, 40, 5);
    /// assert_eq!(span, Span::new(15, 55));
    /// ```
    ///
    /// # Panics
    ///
    /// This function panics if `span` is negative, odd, or not an integer multiple of `grid`.
    pub fn from_center_span_gridded(center: i64, span: i64, grid: i64) -> Self {
        assert!(span >= 0);
        assert_eq!(span % 2, 0);
        assert_eq!(span % grid, 0);

        let start = snap_to_grid(center - (span / 2), grid);

        Self::new(start, start + span)
    }

    /// Gets the center of the span.
    #[inline]
    pub const fn center(&self) -> i64 {
        (self.start + self.stop) / 2
    }

    /// Gets the length of the span.
    #[inline]
    pub const fn length(&self) -> i64 {
        self.stop - self.start
    }

    /// Gets the start of the span.
    #[inline]
    pub const fn start(&self) -> i64 {
        self.start
    }

    /// Gets the stop of the span.
    #[inline]
    pub const fn stop(&self) -> i64 {
        self.stop
    }

    /// Checks if the span intersects with the [`Span`] `other`.
    #[inline]
    pub const fn intersects(&self, other: &Self) -> bool {
        !(other.stop < self.start || self.stop < other.start)
    }

    /// Creates a new minimal [`Span`] that contains all of the elements of `spans`.
    pub fn merge(spans: impl IntoIterator<Item = Self>) -> Self {
        use std::cmp::{max, min};
        let mut spans = spans.into_iter();
        let (mut start, mut stop) = spans
            .next()
            .expect("Span::merge requires at least one span")
            .into();

        for span in spans {
            start = min(start, span.start);
            stop = max(stop, span.stop);
        }

        assert!(start <= stop);

        Span { start, stop }
    }

    /// Merges adjacent spans when `merge_fn` evaluates to true.
    #[doc(hidden)]
    pub fn merge_adjacent(
        spans: impl IntoIterator<Item = Self>,
        mut merge_fn: impl FnMut(Span, Span) -> bool,
    ) -> impl Iterator<Item = Span> {
        let mut spans: Vec<Span> = spans.into_iter().collect();
        spans.sort_by_key(|span| span.start());

        let mut merged_spans = Vec::new();

        let mut j = 0;
        while j < spans.len() {
            let mut curr_span = spans[j];
            j += 1;
            while j < spans.len() && merge_fn(curr_span, spans[j]) {
                curr_span = curr_span.union(spans[j]);
                j += 1;
            }
            merged_spans.push(curr_span);
        }

        merged_spans.into_iter()
    }

    /// Calculates the smallest interval containing this span and `other`.
    pub fn union(self, other: Self) -> Self {
        use std::cmp::{max, min};
        Self {
            start: min(self.start, other.start),
            stop: max(self.stop, other.stop),
        }
    }

    /// Calculates the minimal bounding interval of all spans provided.
    ///
    /// # Example
    ///
    /// ```
    /// # use geometry::prelude::*;
    /// let spans = vec![
    ///     Span::new(10, 40),
    ///     Span::new(35, 60),
    ///     Span::new(20, 30),
    ///     Span::new(-10, 5),
    /// ];
    /// assert_eq!(Span::union_all(spans.into_iter()), Span::new(-10, 60));
    /// ```
    ///
    /// # Panics
    ///
    /// This function panics if the provided iterator has no elements.
    /// If your iterator may be empty, consider using [`Span::union_all_option`].
    pub fn union_all<T>(spans: impl Iterator<Item = T>) -> Self
    where
        T: Into<Self>,
    {
        spans
            .fold(None, |acc: Option<Span>, s| match acc {
                Some(acc) => Some(acc.union(s.into())),
                None => Some(s.into()),
            })
            .unwrap()
    }

    /// Calculates the minimal bounding interval of all `Option<Span>`s provided.
    ///
    /// All `None` elements in the iterator are ignored.
    /// If the iterator has no `Some(_)` elements, this function returns [`None`].
    ///
    /// # Example
    ///
    /// ```
    /// # use geometry::prelude::*;
    /// let spans = vec![
    ///     Some(Span::new(10, 40)),
    ///     Some(Span::new(35, 60)),
    ///     None,
    ///     Some(Span::new(20, 30)),
    ///     None,
    ///     Some(Span::new(-10, 5)),
    /// ];
    /// assert_eq!(Span::union_all_option(spans.into_iter()), Some(Span::new(-10, 60)));
    /// ```
    pub fn union_all_option<T>(spans: impl Iterator<Item = T>) -> Option<Self>
    where
        T: Into<Option<Self>>,
    {
        spans
            .filter_map(|s| s.into())
            .fold(None, |acc, s| match acc {
                Some(acc) => Some(acc.union(s)),
                None => Some(s),
            })
    }

    /// Calculates the intersection of this span with `other`.
    pub fn intersection(self, other: Self) -> Option<Self> {
        let _start = std::cmp::max(self.start(), other.start());
        let _stop = std::cmp::min(self.stop(), other.stop());
        if _start > _stop {
            None
        } else {
            Some(Self::new(_start, _stop))
        }
    }

    /// Returns a new [`Span`] representing the union of the current span with the given point.
    pub fn add_point(self, pos: i64) -> Self {
        use std::cmp::{max, min};
        Self {
            start: min(self.start, pos),
            stop: max(self.stop, pos),
        }
    }

    /// Shrinks the given side by the given amount.
    ///
    /// Behavior is controlled by the given [`Sign`]:
    /// * If `side` is [`Sign::Pos`], shrinks from the positive end (ie. decreases the `stop`).
    /// * If `side` is [`Sign::Neg`], shrinks from the negative end (ie. increases the `start`).
    pub fn shrink(self, side: Sign, amount: i64) -> Self {
        assert!(self.length() >= amount);
        match side {
            Sign::Pos => Self::new(self.start, self.stop - amount),
            Sign::Neg => Self::new(self.start + amount, self.stop),
        }
    }

    /// Shrinks the span by the given amount on all sides.
    pub const fn shrink_all(self, amount: i64) -> Self {
        assert!(self.length() >= 2 * amount);
        Self {
            start: self.start + amount,
            stop: self.stop - amount,
        }
    }

    /// Translates the span by the given amount.
    pub const fn translate(self, amount: i64) -> Self {
        Self {
            start: self.start + amount,
            stop: self.stop + amount,
        }
    }

    /// The minimum separation between this span and `other`.
    ///
    /// # Example
    ///
    /// ```
    /// # use geometry::prelude::*;
    /// let s1 = Span::new(10, 20);
    /// let s2 = Span::new(30, 50);
    /// let s3 = Span::new(25, 40);
    /// assert_eq!(s1.dist_to_span(s2), 10);
    /// assert_eq!(s1.dist_to_span(s3), 5);
    /// assert_eq!(s2.dist_to_span(s3), 0);
    /// assert_eq!(s3.dist_to_span(s3), 0);
    /// ```
    pub fn dist_to_span(self, other: Span) -> i64 {
        std::cmp::max(
            0,
            self.union(other).length() - self.length() - other.length(),
        )
    }

    /// Returns whether the span's center is at an integer coordinate.
    ///
    /// # Example
    ///
    /// ```
    /// # use geometry::prelude::*;
    /// let span = Span::new(0, 100);
    /// assert!(span.has_integer_center());
    ///
    /// let span = Span::new(0, 99);
    /// assert!(!span.has_integer_center());
    /// ```
    pub fn has_integer_center(&self) -> bool {
        (self.start() + self.stop()) % 2 == 0
    }
}

impl Intersect<Span> for Span {
    type Output = Self;
    fn intersect(&self, other: &Span) -> Option<Self::Output> {
        self.intersection(*other)
    }
}

impl Contains<Span> for Span {
    fn contains(&self, other: &Span) -> Containment {
        if other.start() >= self.start() && other.stop() <= self.stop() {
            Containment::Full
        } else if other.start() <= self.stop() || other.stop() >= self.start() {
            Containment::Partial
        } else {
            Containment::None
        }
    }
}

impl BoundingUnion<Span> for Span {
    type Output = Span;
    fn bounding_union(&self, other: &Span) -> Self::Output {
        self.union(*other)
    }
}

impl From<(i64, i64)> for Span {
    #[inline]
    fn from(tup: (i64, i64)) -> Self {
        Self::new(tup.0, tup.1)
    }
}

impl From<Span> for (i64, i64) {
    #[inline]
    fn from(s: Span) -> Self {
        (s.start(), s.stop())
    }
}