1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
//! Rectangular ring geometry.
//!
//! May be useful for drawing structures that enclose other structures,
//! such as guard rings.

use array_map::ArrayMap;
use serde::{Deserialize, Serialize};

use crate::prelude::*;
use crate::transform::TranslateMut;

/// A rectangular ring surrounding an enclosed rectangle.
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
pub struct Ring {
    /// Vertical span of top segment.
    topv: Span,
    /// Vertical span of bottom segment.
    botv: Span,
    /// Horizontal span of left segment.
    lefth: Span,
    /// Horizontal span of right segment.
    righth: Span,
}

/// Represents the ways [`Ring`] geometry can be specified.
#[derive(Debug, Copy, Clone, Serialize, Deserialize, PartialEq, Eq, PartialOrd, Ord)]
pub enum RingContents {
    /// The ring must fit within the given rectangle.
    Outer(Rect),
    /// The ring must enclose the given rectangle.
    Inner(Rect),
}

impl RingContents {
    /// The rectangle stored in this enum variant.
    pub fn rect(&self) -> Rect {
        match self {
            Self::Outer(r) => *r,
            Self::Inner(r) => *r,
        }
    }

    /// Returns true if this is a [`RingContents::Outer`] variant.
    pub fn is_outer(&self) -> bool {
        matches!(self, Self::Outer(_))
    }

    /// Returns true if this is a [`RingContents::Inner`] variant.
    pub fn is_inner(&self) -> bool {
        matches!(self, Self::Inner(_))
    }
}

/// A utility for constructing a [`Ring`].
#[derive(Debug, Default, Copy, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct RingBuilder {
    contents: Option<RingContents>,
    widths: ArrayMap<Side, i64, 4>,
}

impl Ring {
    /// Creates a new [`RingBuilder`].
    #[inline]
    pub fn builder() -> RingBuilder {
        RingBuilder::new()
    }

    /// Checks that the ring is valid.
    pub(crate) fn is_valid(&self) -> bool {
        self.topv.start() > self.botv.stop() && self.righth.start() > self.lefth.stop()
    }

    /// The horizontal span of the annulus of the ring.
    pub fn outer_hspan(&self) -> Span {
        Span::new(self.lefth.start(), self.righth.stop())
    }

    /// The horizontal span of the inner portion of the ring.
    pub fn inner_hspan(&self) -> Span {
        Span::new(self.lefth.stop(), self.righth.start())
    }

    /// The vertical span of the annulus of the ring.
    pub fn outer_vspan(&self) -> Span {
        Span::new(self.botv.start(), self.topv.stop())
    }

    /// The vertical span of the inner portion of the ring.
    pub fn inner_vspan(&self) -> Span {
        Span::new(self.botv.stop(), self.topv.start())
    }

    /// The outer annulus bounding box.
    pub fn outer(&self) -> Rect {
        Rect::from_spans(self.outer_hspan(), self.outer_vspan())
    }

    /// The inner rectangle.
    pub fn inner(&self) -> Rect {
        Rect::from_spans(self.inner_hspan(), self.inner_vspan())
    }

    /// The annular rectangle on the given side.
    #[inline]
    pub fn rect(&self, side: Side) -> Rect {
        match side {
            Side::Top => Rect::from_spans(self.outer_hspan(), self.topv),
            Side::Right => Rect::from_spans(self.righth, self.outer_vspan()),
            Side::Bot => Rect::from_spans(self.outer_hspan(), self.botv),
            Side::Left => Rect::from_spans(self.lefth, self.outer_vspan()),
        }
    }

    /// The annuluar rectangle on the given side, but limited to the width/height of the inner rectangle.
    #[inline]
    pub fn inner_rect(&self, side: Side) -> Rect {
        match side {
            Side::Top => Rect::from_spans(self.inner_hspan(), self.topv),
            Side::Right => Rect::from_spans(self.righth, self.inner_vspan()),
            Side::Bot => Rect::from_spans(self.inner_hspan(), self.botv),
            Side::Left => Rect::from_spans(self.lefth, self.inner_vspan()),
        }
    }

    /// The lower left annular corner.
    ///
    /// Shares a corner with the inner rect, but does not have any edges
    /// in common with the inner rect.
    #[inline]
    pub fn corner(&self, corner: Corner) -> Rect {
        match corner {
            Corner::LowerLeft => Rect::from_spans(self.lefth, self.botv),
            Corner::UpperLeft => Rect::from_spans(self.lefth, self.topv),
            Corner::LowerRight => Rect::from_spans(self.righth, self.botv),
            Corner::UpperRight => Rect::from_spans(self.righth, self.topv),
        }
    }

    /// The left annular rectangle.
    #[inline]
    pub fn left(&self) -> Rect {
        self.rect(Side::Left)
    }

    /// The right annular rectangle.
    #[inline]
    pub fn right(&self) -> Rect {
        self.rect(Side::Right)
    }

    /// The top annular rectangle.
    #[inline]
    pub fn top(&self) -> Rect {
        self.rect(Side::Top)
    }

    /// The bottom annular rectangle.
    #[inline]
    pub fn bot(&self) -> Rect {
        self.rect(Side::Bot)
    }

    /// All 4 annular rectangles.
    ///
    /// The order is subject to change.
    #[inline]
    pub fn rects(&self) -> [Rect; 4] {
        [self.top(), self.right(), self.bot(), self.left()]
    }

    /// The [`Rect`]s going in the horizontal direction (ie. the bottom and top rectangles).
    #[inline]
    pub fn hrects(&self) -> [Rect; 2] {
        [self.bot(), self.top()]
    }

    /// The [`Rect`]s going in the vertical direction (ie. the left and right rectangles).
    #[inline]
    pub fn vrects(&self) -> [Rect; 2] {
        [self.left(), self.right()]
    }

    /// The 4 inner annular rectangles.
    ///
    /// The order is subject to change.
    pub fn inner_rects(&self) -> [Rect; 4] {
        [
            self.inner_rect(Side::Top),
            self.inner_rect(Side::Right),
            self.inner_rect(Side::Bot),
            self.inner_rect(Side::Left),
        ]
    }

    /// The inner annular vertical-going (i.e. left and right) rectangles.
    pub fn inner_vrects(&self) -> [Rect; 2] {
        [self.inner_rect(Side::Left), self.inner_rect(Side::Right)]
    }

    /// The inner annular horizontal-going (i.e. top and bottom) rectangles.
    pub fn inner_hrects(&self) -> [Rect; 2] {
        [self.inner_rect(Side::Bot), self.inner_rect(Side::Top)]
    }

    /// The [`Rect`]s going in the given direction.
    ///
    /// Also see [`Ring::hrects`] and [`Ring::vrects`].
    pub fn dir_rects(&self, dir: Dir) -> [Rect; 2] {
        match dir {
            Dir::Horiz => self.hrects(),
            Dir::Vert => self.vrects(),
        }
    }
}

impl Bbox for Ring {
    #[inline]
    fn bbox(&self) -> Option<Rect> {
        self.outer().bbox()
    }
}

impl Contains<Point> for Ring {
    fn contains(&self, other: &Point) -> Containment {
        self.rects()
            .into_iter()
            .map(move |r| r.contains(other))
            .max()
            .unwrap()
    }
}

impl TranslateMut for Ring {
    fn translate_mut(&mut self, p: Point) {
        self.lefth.translate(p.x);
        self.righth.translate(p.x);
        self.botv.translate(p.y);
        self.topv.translate(p.y);
    }
}

impl From<RingBuilder> for Ring {
    fn from(value: RingBuilder) -> Self {
        let contents = value.contents.unwrap();
        let r = contents.rect();

        let sign = if contents.is_outer() {
            Sign::Pos
        } else {
            Sign::Neg
        };

        let topv = Span::with_point_and_length(sign, r.top(), value.widths[Side::Top]);
        let righth = Span::with_point_and_length(sign, r.right(), value.widths[Side::Right]);
        let lefth = Span::with_point_and_length(!sign, r.left(), value.widths[Side::Left]);
        let botv = Span::with_point_and_length(!sign, r.bot(), value.widths[Side::Bot]);

        let res = Self {
            topv,
            botv,
            lefth,
            righth,
        };

        if contents.is_outer() {
            assert_eq!(res.outer(), r);
        } else {
            assert_eq!(res.inner(), r);
        }

        assert!(res.is_valid());
        res
    }
}

impl RingBuilder {
    /// Creates a new [`RingBuilder`].
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Constructs a [`Ring`] from this builder.
    #[inline]
    pub fn build(&mut self) -> Ring {
        Ring::from(*self)
    }

    /// Set the outer region of the ring.
    ///
    /// Only one of inner and outer may be set.
    pub fn outer(&mut self, rect: Rect) -> &mut Self {
        self.contents = Some(RingContents::Outer(rect));
        self
    }

    /// Set the inner region of the ring.
    ///
    /// Only one of inner and outer may be set.
    pub fn inner(&mut self, rect: Rect) -> &mut Self {
        self.contents = Some(RingContents::Inner(rect));
        self
    }

    /// Set the width of the left side of the ring.
    pub fn left_width(&mut self, value: i64) -> &mut Self {
        self.widths[Side::Left] = value;
        self
    }

    /// Set the width of the right side of the ring.
    pub fn right_width(&mut self, value: i64) -> &mut Self {
        self.widths[Side::Right] = value;
        self
    }

    /// Set the height of the bottom of the ring.
    pub fn bot_height(&mut self, value: i64) -> &mut Self {
        self.widths[Side::Bot] = value;
        self
    }

    /// Set the height of the top of the ring.
    pub fn top_height(&mut self, value: i64) -> &mut Self {
        self.widths[Side::Top] = value;
        self
    }

    /// Sets the widths of the vertical-going parts of the ring to the given value.
    pub fn widths(&mut self, value: i64) -> &mut Self {
        self.left_width(value);
        self.right_width(value)
    }

    /// Sets the heights of the horizontal-going parts of the ring to the given value.
    pub fn heights(&mut self, value: i64) -> &mut Self {
        self.top_height(value);
        self.bot_height(value)
    }

    /// Sets the width of all ring edges to the given value.
    pub fn uniform_width(&mut self, value: i64) -> &mut Self {
        self.widths(value);
        self.heights(value)
    }

    /// Sets the width of segments running in the given direction.
    ///
    /// If `dir` is [`Dir::Vert`], sets the widths of the left/right regions.
    /// If `dir` is [`Dir::Horiz`], sets the heights of the top/bottom regions.
    pub fn dir_widths(&mut self, dir: Dir, value: i64) -> &mut Self {
        match dir {
            Dir::Vert => self.widths(value),
            Dir::Horiz => self.heights(value),
        }
    }

    /// Set the width of the given side.
    pub fn side_width(&mut self, side: Side, value: i64) -> &mut Self {
        use Side::*;
        match side {
            Top => self.top_height(value),
            Bot => self.bot_height(value),
            Left => self.left_width(value),
            Right => self.right_width(value),
        }
    }
}