substrate/types/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
//! Traits and types for defining interfaces and signals in Substrate.

use std::{
    borrow::Borrow,
    fmt::Debug,
    ops::{Deref, Index},
};

pub use ::codegen::{BundleKind, Io};
use arcstr::ArcStr;
use serde::{Deserialize, Serialize};

use crate::{
    block::Block,
    schematic::{CellId, InstanceId, InstancePath},
};

pub use scir::Direction;

#[doc(hidden)]
pub mod codegen;
mod impls;
pub mod layout;
pub mod schematic;
#[cfg(test)]
mod tests;

/// The [`BundleKind`] of a block's IO.
pub type IoKind<T> = <<T as Block>::Io as HasBundleKind>::BundleKind;

// BEGIN TRAITS

/// The length of the flattened list.
pub trait FlatLen {
    /// The length of the flattened list.
    fn len(&self) -> usize;
    /// Whether or not the flattened representation is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

impl<T: FlatLen> FlatLen for &T {
    fn len(&self) -> usize {
        (*self).len()
    }
}

/// Flatten a structure into a list.
pub trait Flatten<T>: FlatLen {
    /// Flatten a structure into a list.
    fn flatten<E>(&self, output: &mut E)
    where
        E: Extend<T>;

    /// Flatten into a [`Vec`].
    fn flatten_vec(&self) -> Vec<T> {
        let len = self.len();
        let mut vec = Vec::with_capacity(len);
        self.flatten(&mut vec);
        assert_eq!(vec.len(), len, "Flatten::flatten_vec produced a Vec with an incorrect length: expected {} from FlatLen::len, got {}", len, vec.len());
        vec
    }
}

/// Unflatten a structure from an iterator.
pub trait Unflatten<D, T>: FlatLen + Sized {
    /// Unflatten a structure from an iterator.
    ///
    /// A correct implementation must only return [`None`]
    /// if the iterator has insufficient elements.
    /// Returning None for any other reason is a logic error.
    /// Unsafe code should not rely on implementations of this method being correct.
    fn unflatten<I>(data: &D, source: &mut I) -> Option<Self>
    where
        I: Iterator<Item = T>;
}

impl<S, T: Flatten<S>> Flatten<S> for &T {
    fn flatten<E>(&self, output: &mut E)
    where
        E: Extend<S>,
    {
        (*self).flatten(output)
    }
}

/// An object with named flattened components.
pub trait HasNameTree {
    /// Return a tree specifying how nodes contained within this type should be named.
    ///
    /// Important: empty types (i.e. those with a flattened length of 0) must return [`None`].
    /// All non-empty types must return [`Some`].
    fn names(&self) -> Option<Vec<NameTree>>;

    /// Returns a flattened list of node names.
    fn flat_names(&self, root: Option<NameFragment>) -> Vec<NameBuf> {
        self.names()
            .map(|t| NameTree::with_optional_fragment(root, t).flatten())
            .unwrap_or_default()
    }
}

/// A bundle kind.
pub trait BundleKind:
    FlatLen + HasNameTree + HasBundleKind<BundleKind = Self> + Debug + Clone + Eq + Send + Sync
{
}
impl<
        T: FlatLen + HasNameTree + HasBundleKind<BundleKind = T> + Debug + Clone + Eq + Send + Sync,
    > BundleKind for T
{
}

/// Indicates that an IO specifies signal directions for all of its fields.
pub trait Directed: Flatten<Direction> {}
impl<T: Flatten<Direction>> Directed for T {}

/// A trait implemented by block input/output interfaces.
pub trait Io: Directed + HasBundleKind + Clone {}
impl<T: Directed + HasBundleKind + Clone> Io for T {}

/// A construct with an associated [`BundleKind`].
pub trait HasBundleKind: Send + Sync {
    /// The Rust type of the [`BundleKind`] associated with this bundle.
    type BundleKind: BundleKind;

    /// Returns the [`BundleKind`] of this bundle.
    fn kind(&self) -> Self::BundleKind;
}

impl<T: HasBundleKind> HasBundleKind for &T {
    type BundleKind = T::BundleKind;

    fn kind(&self) -> Self::BundleKind {
        (*self).kind()
    }
}

// END TRAITS

// BEGIN TYPES

/// A portion of a node name.
#[derive(Debug, Clone, Hash, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize)]
pub enum NameFragment {
    /// An element identified by a string name, such as a struct field.
    Str(ArcStr),
    /// A numbered element of an array/bus.
    Idx(usize),
}

/// An owned node name, consisting of an ordered list of [`NameFragment`]s.
#[derive(Debug, Clone, Hash, Eq, PartialEq, Ord, PartialOrd, Default, Serialize, Deserialize)]
pub struct NameBuf {
    fragments: Vec<NameFragment>,
}

/// A tree for hierarchical node naming.
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize)]
pub struct NameTree {
    fragment: Option<NameFragment>,
    children: Vec<NameTree>,
}

/// An input port of kind `T`.
///
/// Recursively overrides the direction of all components of `T` to be [`Input`](Direction::Input)
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Default, Serialize, Deserialize)]
pub struct Input<T>(pub T);

/// An output port of kind `T`.
///
/// Recursively overrides the direction of all components of `T` to be [`Output`](Direction::Output)
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Default, Serialize, Deserialize)]
pub struct Output<T>(pub T);

/// An inout port of kind `T`.
///
/// Recursively overrides the direction of all components of `T` to be [`InOut`](Direction::InOut)
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Default, Serialize, Deserialize)]
pub struct InOut<T>(pub T);

/// Flip the direction of all ports in `T`
///
/// See [`Direction::flip`]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Default, Serialize, Deserialize)]
pub struct Flipped<T>(pub T);

/// A type representing a single hardware wire in a [`BundleKind`].
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub struct Signal;

impl Signal {
    /// Creates a new [`Signal`].
    #[inline]
    pub fn new() -> Self {
        Self
    }
}

/// An array containing some number of elements of kind `T`.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize)]
pub struct Array<T> {
    len: usize,
    kind: T,
}

impl<T> Array<T> {
    /// Create a new array of the given length and bundle kind.
    #[inline]
    pub fn new(len: usize, kind: T) -> Self {
        Self { len, kind }
    }

    /// Returns if the array has length 0.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Returns the number of elements in the array.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns the kind of the elements in the array.
    pub fn kind(&self) -> &T {
        &self.kind
    }
}

/// An instantiated array containing a fixed number of elements of `T`.
#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize)]
pub struct ArrayBundle<T: HasBundleKind> {
    elems: Vec<T>,
    kind: T::BundleKind,
}

// END TYPES

// BEGIN COMMON IO TYPES

/// The interface to a standard 4-terminal MOSFET.
#[derive(Debug, Default, Clone, Io)]
pub struct MosIo {
    /// The drain.
    pub d: InOut<Signal>,
    /// The gate.
    pub g: Input<Signal>,
    /// The source.
    pub s: InOut<Signal>,
    /// The body.
    pub b: InOut<Signal>,
}

/// The interface to which simulation testbenches should conform.
#[derive(Debug, Default, Clone, Io)]
pub struct TestbenchIo {
    /// The global ground net.
    pub vss: InOut<Signal>,
}

/// The interface for 2-terminal blocks.
#[derive(Debug, Default, Clone, Io)]
pub struct TwoTerminalIo {
    /// The positive terminal.
    pub p: InOut<Signal>,
    /// The negative terminal.
    pub n: InOut<Signal>,
}

/// The interface for VDD and VSS rails.
#[derive(Debug, Default, Clone, Io)]
pub struct PowerIo {
    /// The VDD rail.
    pub vdd: InOut<Signal>,
    /// The VSS rail.
    pub vss: InOut<Signal>,
}

/// A pair of differential signals.
// TODO: Create proc macro for defining un-directioned (non-IO) bundle types directly.
#[derive(Debug, Default, Copy, Clone, Io)]
pub struct DiffPair {
    /// The positive signal.
    pub p: InOut<Signal>,
    /// The negative signal.
    pub n: InOut<Signal>,
}

// END COMMON IO TYPES