layir/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#![allow(dead_code)]

pub mod id;

use std::{
    collections::{HashMap, HashSet, VecDeque},
    ops::Deref,
};

use crate::id::Id;
use arcstr::ArcStr;
use enumify::enumify;
use geometry::{
    bbox::Bbox,
    point::Point,
    prelude::{Transform, Transformation},
    rect::Rect,
    transform::{TransformMut, TransformRef, Translate, TranslateMut, TranslateRef},
    union::BoundingUnion,
};
use indexmap::{IndexMap, IndexSet};
use serde::{Deserialize, Serialize};
use thiserror::Error;
use uniquify::Names;

pub struct Cells;

// The reason this uses [`Cells`] instead of [`Cell`]
// is because `Cell` has a generic type parameter.
pub type CellId = Id<Cells>;
pub type InstanceId = Id<Instance>;

#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
pub struct LibraryBuilder<L> {
    cell_id: CellId,
    cells: IndexMap<CellId, Cell<L>>,
    name_map: HashMap<ArcStr, CellId>,
    names: Names<CellId>,
}

#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
pub struct Library<L>(LibraryBuilder<L>);

#[derive(Debug, Clone, Eq, PartialEq, Serialize, Deserialize)]
pub struct Cell<L> {
    name: ArcStr,
    instance_id: InstanceId,
    instances: IndexMap<InstanceId, Instance>,
    instance_name_map: HashMap<ArcStr, InstanceId>,
    elements: Vec<Element<L>>,
    ports: IndexMap<ArcStr, Port<L>>,
}

/// A location at which this cell should be connected.
#[derive(Debug, Clone, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Port<L> {
    direction: Direction,
    elements: Vec<Element<L>>,
}

/// Port directions.
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq, Default, Serialize, Deserialize)]
pub enum Direction {
    /// Input.
    Input,
    /// Output.
    Output,
    /// Input or output.
    ///
    /// Represents ports whose direction is not known
    /// at generator elaboration time (e.g. the output of a tristate buffer).
    #[default]
    InOut,
}

/// A primitive layout element.
#[derive(Debug, Clone, Hash, Eq, PartialEq, Serialize, Deserialize)]
#[enumify]
pub enum Element<L> {
    /// A primitive layout shape.
    Shape(Shape<L>),
    /// A primitive text annotation.
    Text(Text<L>),
}

/// A primitive layout shape consisting of a layer and a geometric shape.
#[derive(Debug, Clone, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Shape<L> {
    layer: L,
    shape: geometry::shape::Shape,
}

/// A primitive text annotation consisting of a layer, string, and location.
#[derive(Debug, Clone, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Text<L> {
    layer: L,
    text: ArcStr,
    trans: Transformation,
}

#[derive(Debug, Clone, Hash, Eq, PartialEq, Serialize, Deserialize)]
pub struct Instance {
    child: CellId,
    name: ArcStr,
    trans: Transformation,
}

impl<L> Default for LibraryBuilder<L> {
    fn default() -> Self {
        Self {
            cell_id: Id::new(),
            names: Default::default(),
            name_map: Default::default(),
            cells: Default::default(),
        }
    }
}

impl<L> LibraryBuilder<L> {
    pub fn new() -> Self {
        Default::default()
    }

    pub fn add_cell(&mut self, mut cell: Cell<L>) -> CellId {
        let id = self.cell_id.alloc();
        cell.name = self.names.assign_name(id, &cell.name);
        self.name_map.insert(cell.name.clone(), id);
        assert!(self.cells.insert(id, cell).is_none());
        id
    }

    pub fn cell(&self, id: CellId) -> &Cell<L> {
        self.cells.get(&id).unwrap()
    }

    pub fn try_cell(&self, id: CellId) -> Option<&Cell<L>> {
        self.cells.get(&id)
    }

    pub fn cell_named(&self, name: &str) -> &Cell<L> {
        self.cell(*self.name_map.get(name).unwrap())
    }

    pub fn try_cell_named(&self, name: &str) -> Option<&Cell<L>> {
        self.try_cell(*self.name_map.get(name)?)
    }

    /// Gets the cell ID corresponding to the given name.
    ///
    /// # Panics
    ///
    /// Panics if no cell has the given name.
    /// For a non-panicking alternative, see [`try_cell_id_named`](LibraryBuilder::try_cell_id_named).
    pub fn cell_id_named(&self, name: &str) -> CellId {
        match self.name_map.get(name) {
            Some(&cell) => cell,
            None => {
                tracing::error!("no cell named `{}`", name);
                panic!("no cell named `{}`", name);
            }
        }
    }

    /// Gets the cell ID corresponding to the given name.
    pub fn try_cell_id_named(&self, name: &str) -> Option<CellId> {
        self.name_map.get(name).copied()
    }

    /// Iterates over the `(id, cell)` pairs in this library.
    pub fn cells(&self) -> impl Iterator<Item = (CellId, &Cell<L>)> {
        self.cells.iter().map(|(id, cell)| (*id, cell))
    }

    /// Returns cell IDs in topological order.
    pub fn topological_order(&self) -> Vec<CellId> {
        let mut state = IndexSet::new();
        for (cell, _) in self.cells() {
            self.dfs_postorder(cell, &mut state);
        }
        let ids = state.into_iter().collect::<Vec<_>>();
        assert_eq!(ids.len(), self.cells.len());
        ids
    }

    fn dfs_postorder(&self, id: CellId, state: &mut IndexSet<CellId>) {
        if state.contains(&id) {
            return;
        }

        let cell = self.cell(id);
        for (_, inst) in cell.instances() {
            self.dfs_postorder(inst.child(), state);
        }
        state.insert(id);
    }

    /// The list of cell IDs instantiated by the given root cells.
    ///
    /// The list returned will include the root cell IDs.
    pub(crate) fn cells_used_by(&self, roots: impl IntoIterator<Item = CellId>) -> Vec<CellId> {
        let mut stack = VecDeque::new();
        let mut visited = HashSet::new();
        for root in roots {
            stack.push_back(root);
        }

        while let Some(id) = stack.pop_front() {
            if visited.contains(&id) {
                continue;
            }
            visited.insert(id);
            let cell = self.cell(id);
            for (_, inst) in cell.instances() {
                stack.push_back(inst.child);
            }
        }

        visited.drain().collect()
    }

    pub fn build(self) -> Result<Library<L>, BuildError> {
        Ok(Library(self))
    }
}

#[derive(Clone, Debug, Error)]
#[error("error building LayIR library")]
pub struct BuildError;

impl<L> Deref for Library<L> {
    type Target = LibraryBuilder<L>;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<L> Cell<L> {
    pub fn new(name: impl Into<ArcStr>) -> Self {
        Self {
            name: name.into(),
            instance_id: Id::new(),
            instances: Default::default(),
            instance_name_map: Default::default(),
            elements: Default::default(),
            ports: Default::default(),
        }
    }

    /// The name of the cell.
    #[inline]
    pub fn name(&self) -> &ArcStr {
        &self.name
    }

    /// Iterate over the ports of this cell.
    #[inline]
    pub fn ports(&self) -> impl Iterator<Item = (&ArcStr, &Port<L>)> {
        self.ports.iter()
    }

    pub fn add_port(&mut self, name: impl Into<ArcStr>, port: Port<L>) {
        self.ports.insert(name.into(), port);
    }

    /// Get a port of this cell by name.
    ///
    /// # Panics
    ///
    /// Panics if the provided port does not exist.
    #[inline]
    pub fn port(&self, name: &str) -> &Port<L> {
        self.try_port(name).unwrap()
    }

    /// Get a mutable reference to a port of this cell by name.
    ///
    /// # Panics
    ///
    /// Panics if the provided port does not exist.
    #[inline]
    pub fn port_mut(&mut self, name: &str) -> &mut Port<L> {
        self.try_port_mut(name).unwrap()
    }

    /// Get a port of this cell by name.
    #[inline]
    pub fn try_port(&self, name: &str) -> Option<&Port<L>> {
        self.ports.get(name)
    }

    /// Get a mutable reference to a port of this cell by name.
    #[inline]
    pub fn try_port_mut(&mut self, name: &str) -> Option<&mut Port<L>> {
        self.ports.get_mut(name)
    }

    /// Get the instance associated with the given ID.
    ///
    /// # Panics
    ///
    /// Panics if no instance with the given ID exists.
    #[inline]
    pub fn instance(&self, id: InstanceId) -> &Instance {
        self.instances.get(&id).unwrap()
    }

    /// Get the instance associated with the given ID.
    #[inline]
    pub fn try_instance(&self, id: InstanceId) -> Option<&Instance> {
        self.instances.get(&id)
    }

    /// Gets the instance with the given name.
    ///
    /// # Panics
    ///
    /// Panics if no instance has the given name.
    pub fn instance_named(&self, name: &str) -> &Instance {
        self.instance(*self.instance_name_map.get(name).unwrap())
    }

    /// Gets the instance with the given name.
    pub fn try_instance_named(&self, name: &str) -> Option<&Instance> {
        self.try_instance(*self.instance_name_map.get(name)?)
    }

    /// Add the given instance to the cell.
    #[inline]
    pub fn add_instance(&mut self, instance: Instance) -> InstanceId {
        let id = self.instance_id.alloc();
        self.instance_name_map.insert(instance.name.clone(), id);
        self.instances.insert(id, instance);
        id
    }

    /// Iterate over the instances of this cell.
    #[inline]
    pub fn instances(&self) -> impl Iterator<Item = (InstanceId, &Instance)> {
        self.instances.iter().map(|x| (*x.0, x.1))
    }

    pub fn add_element(&mut self, element: impl Into<Element<L>>) {
        self.elements.push(element.into())
    }

    pub fn elements(&self) -> impl Iterator<Item = &Element<L>> {
        self.elements.iter()
    }
}

impl<L> Port<L> {
    pub fn new(direction: Direction) -> Self {
        Self {
            direction,
            elements: Default::default(),
        }
    }

    pub fn direction(&self) -> Direction {
        self.direction
    }

    pub fn elements(&self) -> impl Iterator<Item = &Element<L>> {
        self.elements.iter()
    }

    pub fn add_element(&mut self, element: impl Into<Element<L>>) {
        self.elements.push(element.into())
    }

    pub fn map_layer<L2, F>(&self, f: F) -> Port<L2>
    where
        F: Fn(&L) -> L2,
    {
        Port {
            direction: self.direction,
            elements: self.elements().map(|e| e.map_layer(&f)).collect(),
        }
    }
}

impl<L> Element<L> {
    pub fn layer(&self) -> &L {
        match self {
            Self::Shape(s) => s.layer(),
            Self::Text(t) => t.layer(),
        }
    }

    pub fn with_layer<L2>(&self, layer: L2) -> Element<L2> {
        match self {
            Self::Shape(s) => Element::Shape(s.with_layer(layer)),
            Self::Text(t) => Element::Text(t.with_layer(layer)),
        }
    }

    pub fn map_layer<L2, F>(&self, f: F) -> Element<L2>
    where
        F: FnOnce(&L) -> L2,
    {
        match self {
            Element::Shape(x) => Element::Shape(x.map_layer(f)),
            Element::Text(x) => Element::Text(x.map_layer(f)),
        }
    }
}

impl<L> From<Shape<L>> for Element<L> {
    fn from(value: Shape<L>) -> Self {
        Self::Shape(value)
    }
}

impl<L> From<Text<L>> for Element<L> {
    fn from(value: Text<L>) -> Self {
        Self::Text(value)
    }
}

impl<L> Shape<L> {
    #[inline]
    pub fn new(layer: L, shape: impl Into<geometry::shape::Shape>) -> Self {
        Self {
            layer,
            shape: shape.into(),
        }
    }

    #[inline]
    pub fn layer(&self) -> &L {
        &self.layer
    }

    #[inline]
    pub fn shape(&self) -> &geometry::shape::Shape {
        &self.shape
    }

    pub fn with_layer<L2>(&self, layer: L2) -> Shape<L2> {
        Shape {
            layer,
            shape: self.shape().clone(),
        }
    }

    pub fn map_layer<L2>(&self, f: impl FnOnce(&L) -> L2) -> Shape<L2> {
        Shape {
            layer: f(&self.layer),
            shape: self.shape().clone(),
        }
    }
}

impl<L> Text<L> {
    #[inline]
    pub fn new(layer: L, text: impl Into<ArcStr>) -> Self {
        Self {
            layer,
            text: text.into(),
            trans: Default::default(),
        }
    }

    #[inline]
    pub fn with_transformation(
        layer: L,
        text: impl Into<ArcStr>,
        trans: impl Into<Transformation>,
    ) -> Self {
        Self {
            layer,
            text: text.into(),
            trans: trans.into(),
        }
    }

    #[inline]
    pub fn layer(&self) -> &L {
        &self.layer
    }

    #[inline]
    pub fn text(&self) -> &ArcStr {
        &self.text
    }

    #[inline]
    pub fn transformation(&self) -> Transformation {
        self.trans
    }

    pub fn with_layer<L2>(&self, layer: L2) -> Text<L2> {
        Text {
            layer,
            trans: self.trans,
            text: self.text.clone(),
        }
    }

    pub fn map_layer<L2>(&self, f: impl FnOnce(&L) -> L2) -> Text<L2> {
        Text {
            layer: f(&self.layer),
            trans: self.trans,
            text: self.text.clone(),
        }
    }
}

impl Instance {
    pub fn new(child: CellId, name: impl Into<ArcStr>) -> Self {
        Self {
            child,
            name: name.into(),
            trans: Default::default(),
        }
    }

    pub fn with_transformation(
        child: CellId,
        name: impl Into<ArcStr>,
        transformation: impl Into<Transformation>,
    ) -> Self {
        Self {
            child,
            name: name.into(),
            trans: transformation.into(),
        }
    }

    #[inline]
    pub fn child(&self) -> CellId {
        self.child
    }

    #[inline]
    pub fn name(&self) -> &ArcStr {
        &self.name
    }

    #[inline]
    pub fn transformation(&self) -> Transformation {
        self.trans
    }
}

impl<L> Bbox for Shape<L> {
    fn bbox(&self) -> Option<Rect> {
        self.shape.bbox()
    }
}

impl<L: PartialEq> LayerBbox<L> for Shape<L> {
    fn layer_bbox(&self, layer: &L) -> Option<Rect> {
        if self.layer.eq(layer) {
            self.bbox()
        } else {
            None
        }
    }
}

impl<L, T: Bbox> BoundingUnion<T> for Shape<L> {
    type Output = Rect;

    fn bounding_union(&self, other: &T) -> Self::Output {
        self.bbox().unwrap().bounding_union(&other.bbox())
    }
}

impl<L: Clone> TransformRef for Shape<L> {
    fn transform_ref(&self, trans: Transformation) -> Self {
        Shape {
            layer: self.layer.clone(),
            shape: self.shape.transform_ref(trans),
        }
    }
}

impl<L: Clone> TranslateRef for Shape<L> {
    fn translate_ref(&self, p: Point) -> Self {
        Shape {
            layer: self.layer.clone(),
            shape: self.shape.translate_ref(p),
        }
    }
}

impl<L> TranslateMut for Shape<L> {
    fn translate_mut(&mut self, p: Point) {
        self.shape.translate_mut(p)
    }
}

impl<L> TransformMut for Shape<L> {
    fn transform_mut(&mut self, trans: Transformation) {
        self.shape.transform_mut(trans)
    }
}

/// A trait representing functions available for multi-layered objects with bounding boxes.
pub trait LayerBbox<L>: Bbox {
    /// Compute the bounding box considering only objects occupying the given layer.
    fn layer_bbox(&self, layer: &L) -> Option<Rect>;
}

impl<L, T: LayerBbox<L>> LayerBbox<L> for Vec<T> {
    fn layer_bbox(&self, layer: &L) -> Option<Rect> {
        let mut bbox = None;
        for item in self {
            bbox = bbox.bounding_union(&item.layer_bbox(layer));
        }
        bbox
    }
}

impl<L, T: LayerBbox<L>> LayerBbox<L> for &T {
    fn layer_bbox(&self, layer: &L) -> Option<Rect> {
        (*self).layer_bbox(layer)
    }
}

impl<L: Clone> TranslateRef for Text<L> {
    fn translate_ref(&self, p: Point) -> Self {
        self.clone().translate(p)
    }
}

impl<L: Clone> TransformRef for Text<L> {
    fn transform_ref(&self, trans: Transformation) -> Self {
        self.clone().transform(trans)
    }
}

impl<L> TranslateMut for Text<L> {
    fn translate_mut(&mut self, p: Point) {
        self.transform_mut(Transformation::from_offset(p))
    }
}

impl<L> TransformMut for Text<L> {
    fn transform_mut(&mut self, trans: Transformation) {
        self.trans = Transformation::cascade(trans, self.trans);
    }
}